Probabilistic Neural Computing with Nanoscale CMOS

Tang Tong Boon, PhD
tongboon.tang@petronas.com.my

Content

• Motivation
• Brief intro on probabilistic neural computing
• Neural hardware
• Research activities
Probabilistic Neural Computing with nanoCMOS

Silicon MOSFET scaling

1990s: Golden era
- Gate oxide thickness scaling
- Junction scaling
- Vcc scaling

Limiter:
- Gate oxide tunnelling
- Mobility degradation

Innovations:
- Strain engineering (introduced at 90nm)
- High-κ gate insulator (introduced at 45nm)
- Metal gate (introduced at 45nm)

0.7x every 2 years

1000
100
112.5 nm
1995 2000 2005 2010

Gate Pitch (nm) 0.7x every 2 years

P. Packan et al, IEDM2009

Probabilistic Neural Computing with nanoCMOS

Variability in 65nm (L=65nm, W=140nm)

T. Hiramoto (Tokyo Univ.)
Probabilistic Neural Computing with nanoCMOS

Variability in 65nm (L=65nm, W=140nm)

Systematic components
Random components

Original distribution data

T. Hiramoto (Tokyo Univ.)

Probabilistic Neural Computing with nanoCMOS

Tsunomura, Nishida, Hiramoto, JJAP, 2009
Probabilistic Neural Computing with nanoCMOS

Static Statistical Variability

A. Asenov (Glasgow Univ.)

- Random dopants
- Polysilicon/high-k granularity
- Line edge roughness

Dynamic Statistical Variability

A. Asenov (Glasgow Univ.)

- Continuous
- Single trap
- Multiple traps

Threshold voltage shift

Probability

$\Delta V = \Delta \Delta V$

$N_D = 1 \times 10^{11}$
Probabilistic Neural Computing with nanoCMOS

Challenge in IC design

- Normalised Energy per Cycle (a.u.)
- Normalised Circuit Delay (a.u.)

22nm

T0

After 3 yrs

Alternative solutions

- Redundant circuits
 - Array-based architecture with CNT/SNW
 - NanoFabric with NDR latches
 [Stan et al, Proc. IEEE, 2003]
 - von Neumann multiplexing

- Neural networks
 - CMOL CrossNets
 [Likharev, Stony Brook Univ.]
 - Markov Random Fields
 [Bahar, Mundy and Chen, ICCAD, 2003]

Nanoarray (DeHon, 2003)
Probabilistic Neural Computing with nanoCMOS

Probabilistic Neural Computing

- First developed by Specht in late 1980s
 \[P(m | e) = \frac{P(e | m)P(m)}{P(e)} \]
 - Map any input pattern to a number of classifications
 - Can be forced into a more general function approximator
 - Applied to radar image processing, stock trend prediction, abnormal heartbeat detection, electrochemical sensor fusion.

Probabilistic Neural Computing with nanoCMOS

Probabilistic Neural Computing in hardware

Silicon Cochlear

CRBM

eNose

Silicon Retina
Probabilistic Neural Computing with nanoCMOS

Research Activities

• Integrating RTS noise into circuit analysis

• Probabilistic neural computing (CRBM) with noisy circuits

• Statistical NBTI-effect prediction for ULSI circuits

• Modeling 1/f noise for sub-45

• Neuromorphic engineering
 • E-nose, e-tongue
 • RPO transistor as noisy neurons
Probabilistic Neural Computing with nanoCMOS

Possible collaboration

- Noise/device degradation modeling for CMOS
- Probabilistic neural computing (algorithm/hardware)
- Application (sensor system)

Tang Tong Boon, PhD
Universiti Teknologi PETRONAS
Dept Electrical & Electronic Eng

Tel: 05-368 7801
tongboon.tang@petronas.com.my